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Experimental research on the phenomenon of plane cumulation shows that the theory of the 
process, based on the model of an ideal liquid of [i, 2], needs improvement. The model of a 
Newtonian liquid used in [3], while qualitatively explaining certain experimental relation- 
ships, encounters difficulties in describing the process as a whole [4]. These difficulties 
are connected, on the one hand, with the fact that the velocity of the cumulative jet and the 
shape of the marker line in the plates calculated from the model of a viscous liquid (with a 
constant viscosity) in one and the same test coincide with the respective experimental char- 
acteristics for considerably different Reynolds numbers: In a cumulative jet coincidence is 
reached at Re = 350 and in colliding plates at Re = 25. Thus, the effective viscosity in a 
jet and in plates proves to be different, contradicting the initial assumption that the vis- 
cosity is constant. On the other hand, in a given regime of collision (the velocity, thick- 
ness, and density of the plates are given) the viscosity cannot be determined before the 
test: It is determined in the tests by matching the calculated and experimental character- 
istics and, generally speaking, it varies as a function of the experimental conditions. Con- 
sequently, the effective viscosity is not an objective characteristic of a material, The 
option of such an objective parameter would be very desirable. More complicated rheological 
laws must be used to overcome the difficulties. 

In the present article it is proposed to describe the actual process on the basis of a 
model of a power-law pseudoplastic liquid, the parameters of which are chosen from indepen- 
dent measurements of the dynamic plasticity of metals. 

I. Choice of the Rheological Relation ~ = ~(~, T) 

As was shown in [4], the effective Reynolds numbers in a cumulative jet (Re ~ and in a 
ramming jet (Re,) differ by about an order of magnitude: Re ~ = 350 and Re, ~ 25. Therefore, 
it is natural to try to find another characteristic which varies insignificantly in one and 
the same process. For this purpose we estimate the characteristic shear stresses in a jet 
and a ram from the relation ~ = 2~. 

For the ratio o~ where a superscript corresponds to a jet while a subscript corre- 
sponds to a ram, we have 

o0/o, = = Ro, 0 Re0 (1. i) 

We estimate the characteristic shear velocities ~o and ~, in a jet and a ram as the ratio of 
the difference between the velocities at the free boundary (v = U) and at the critical point 
(v = 0) to the minimum distance r from the critical point to the given free boundary [r ~ = h. 
(i - -  cos y)/2, r, = h(l + cos y)/2], 

~o ~ 2U/[h (t  - -  cos 7)],  e ,  ~ 2U/[h (i  + cos ~)],  ( 1 . 2 )  

where U is the velocity of inflow of material in the frame of reference of the contact point; 
h is the thickness of the inflowing jets; y is half the collision angle. The case of U = 
1.0 km/sec, h = 4 mm, and 2y = 45 ~ was investigated in [4]. Substituting these values into 
(1.2), we obtain 

~ o / [ ,  = (l  + cos ? ) / ( l  - -  cos ~,) ~ 24,5. ( 1 . 3 )  

The substitution of (1.3) into (i.i) results in o/~, = 1.75. 

Thus, compared with the scale of variation of the viscosity, the characteristic shear 
stresses are approximately constant in the region of high pressures. 
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This conclusion is not surprising from the point of view of the theory of plasticity. 
In processes of pressing, stamping, and drawing of metals, when the deformation rate is not 
too high, the experimental Tresca law, according to which, in a state of fluidity, the high- 
est shear stress is constant at all points of the medium and equal to the yield point of the 
material in pure shear. In later research [5-7] it was established that the behavior of 
metals is better described by the dependence 

~i= ~Y' (1.4) 

called the Mises plasticity condition. In (1.4), o i is the stress intensity and Oy is the 
yield point in uniaxial stretching. 

At ~ = l0 s sec -~ and higher the law of deformation of metals can differ from (1.4). 
There are no systematic experimental data in this range. At deformation rates ~ ~ i0 ~ sec -: 
and lower, however, information about the behavior of metals is quite detailed [8-13]. It 
was established that as ~ increases the breaking point o b (the yield point Oy) increases. 
And the dependences of Oy on ~ and T split into two characteristic sections, 

~T = o~ ~: (1.5) 

�9 nuT--T~I 

~y~O~ ' ~', (1.6) 

where O~ D, N, O'y, m, and To are certain constants of the material. The constant n equals 
0.018, 0.020, 0.030, and 0.025 for copper, aluminum, 0.2% C steel, and lead, respectively, 
while the product m(T -- To) does not exceed 0.20 in the entire temperature range investigated 
(up to 1200~ for steel and up to the melting temperatures for the other metals). The func- 
tion (1.5) is valid for T < To, where To = 370, 340, 430, and 80~ for copper, aluminum, 
O. 2% C steel, and lead, respectively. For T > To there exists a critical deformation rate 
~,(T) such that (1.5) is satisfied for ~ > ~, while (1.6) is satisfied for ~ < ~,. These 
transitions from the function (1.5) to (1.6) were discovered in [8, 9, 14] for lead, aluminum, 
and zinc. In [9] the hypothesis was expressed that similar behavior during deformation is 
valid for other metals. If one holds to this assumption, then in extrapolating the known ex- 
perimental data into the region of ~ ~ 104 sec -I one must choose the function (1.5)as the 
most probable. In a graphic extrapolation of data on copper presented in [8, 9] a plausible 
value of D is D = 150~ Since the value of D is introduced, the value of oOy can be deter- 
mined by requiring that for T = 300~ and ~ = 1 sec -~ (the usual conditions for tests of 
metals) the value of Oy coincides with the reference value of the yield limit in uniaxial 
stretching. In future we shall understand ~ as the intensity of the deformation rate. 

We introduce the equatiqn of state of metals under the conditions of high-speed deforma- 

tion in the form 

where gij and eij are the stress and deformation-rate tensors; J is the intensity of the de- 

formation rate, # = ~ 8ijaij, g0 = ~ ~ A(7) ~ ~ o~eD/T; ~ = -- i+ n. 

It is simple to trace the connection between (1.5) and (1.7). Under the conditions of 
high-speed jet flow of metals the maximum pressures usually do not exceed 35 GPa, whereas the 
bulk modulus is K = 200 GPa, i.e., the compressibility of the metal can be neglected (~ii = 
0). Further, the shear deformation under the conditions of jet flow is ~10-100%, so that we 
shall neglect the initial elastic section (less than 1%) in the deformation of the metal. 
In [15] it is pointed out that at high pressures metals deform by hundreds of percent with- 
out destruction, and hence one can assume that during the entire process of deformation a 
metal is in a fluid state and, in accordance with the theory of plasticity, o i = Oy [Eq. 
(1.4)]. Since Oy = Oy(J, T), substituting (1.5) into (1.4), we obtain 

gi = ~ eD/TJn" ( i. 8 ) 

The condition (1.8) means that, in the space of principal stresses, the trace of the 
fluidity surface on the deviator plane is a circle, the radius of which depends on the tem- 
perature T and the intensity J. The case when the radius of the circle is a function of the 
parameter q characterizing the strength has come to be analyzed in the theory of flow [16]. 
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Formally, (1.8) does not differ from this case, since the origin of the parameter q is not 
important for the derivation of the final equations. Therefore, one can write at once the 
Saint Venant--Levi--Mises flow equations, 

3 ~ ( 1 . 9 )  
e~ j - -  2 r s i] '  i, ] = 1 , 2 , 3 ,  

where o~= ~i/O' ~i] = ~176 Substituting (1.8) into (1.9), we obtain (1.7). 

In the plane case (1.9) is written in the form 

-~ @'12 
Ei} = 1 1  - -  (722 " T O~ 2 

w h i l e  t h e  c o n s t a n t s  A a n d  ~o i n  ( 1 . 7 )  w i l l  e q u a l  

D 

~i+~22 A(Y)=--e . 
%-- 2 ' T'3 

For T = const a medium of the type (1.7) is known in the literature as a generalized 
Newtonian (power-law, Ostwald--de Waele) liquid; for ~ > 0 the liquid is called dilatant, for 
--i < ~ < 0 it is pseudoplastic, and the case of a = 0 corresponds to a Newtonian liquid. It 
is seen from (1.7) that all metals can be considered as pseudoplastic liquids. 

As an analysis of the literature shows, after a Newtonian liquid, a power-law liquid is 
among the most studied. The flows of many polymers, solutions, and suspensions obey a power 
law. An exact solution on flow in pipes and approximate solutions for flows around a sphere 
[17, 18], flows in boundary layers near a solid wall [19, 20], and flows with mixing are 
known for this liquid. Judging from the known literature sources, boundary layers near a 
free surface of a power-law liquid and the applicability of the model of a power-law pseudo- 
plastic liquid to high-speed metal flows have not been analyzed. 

Estimates of the temperature in the flow region show that the heating in a ram is not 
very high (the temperature rise is about 50-80~ while the temperature in a cumulative jet 
should not exceed 600-700~ In such a temperature range (300-1000~ the variation of 
ou T) proves tobe small for ~ = const. But the variation of the deformation rate in the 

6 i flow region is great (~ is small in the incoming jets and ~ ~ I0 sec- near the critical 
point). Therefore, in a first approximation one can consider the process of collision of 
jets at a constant temperature. 

2. Statement of the Problem 

Suppose that plane established motion of an incompressible liquid occurs in the region 
shown in Fig. i. Two jets with the same thickness h move from infinity with the same veloc- 
ity U toward each other at an angle 2y. Near the point R of intersection of the asymptotes 
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of the outer boundaries of the oncoming jets they separate into two diverging jets moving in 
opposite directions. At infinity the velocities and thicknesses of the diverging jets are 
Vi, V2, k~, and k2, respectively. Let the flow be symmetrical relative to the bisector of 
the angle 2y and let a single point 0 at which the velocity equals zero exist in the flow 
region. By virtue of the flow symmetry, the point 0 lies on the bisector of the angle 2y. 
We introduce Cartesian coordinates x and y so that the point 0 lies at the origin of coordi- 
nates and the x axis is directed along the axis of symmetry within the angle 2y. The velocity 
components along the x and y axes are designated as u and v; in abbreviated notation we 
shall understand x~ = x, x= = y, u~ = u, and u2 = v. The stress tensor ~ij is connected 
with the deformation-rate tensor ~ij by the relation 

~ i ; =  - -  P S i ) @  A(r) f ~ j , i , i  = t , 2 ,  e~j = Ox; + Oxij' ( 2 . 1 )  

o 0 . uO 
where I = V  "2 ~2. A(T~=__YeD,,r ;  c , . = - - i @ n ;  ; ; > 0 ;  p = _ _ l ~ . .  T is the temperature; n, e l l +  12, ' ad. ~. 2 '~ Y' 

and D are constants of the material. The problem was analyzed in [21] for ~ = 0 and T = 
const. There is no surface tension. We neglect gravitational forces in comparison with 
frictional and inertial forces. Let the temperature T of the medium be constant. 

Eliminating oij from the equations of motion of the medium under stress using (2.1) and 
carrying out the normalization 

x --,- xlh,  V --" VIM ~ -+ ~UU, v --.'- v iU,  P -+ P ! p U  ~, [ = [h /U .  ( 2 . 2 )  

for T = const we can obtain 

o .  oP ,,~'-{ ~(- ~)] a.  + ;~ _ T Au + a[ �9 . - -  W 

u O.v 0,9 Ox - - i f  ell  ~ + el2 ' 

0r j 0,, OP @ IC~ { ('~ o a I  " OI'~] 
<;:,: ' <Ju 0o -5- 7 ' -  ~;= ~- ~~ T ) ; '  

Ou , 8v OUI-c~D 1-kc~ 
d--7: - i -~-# = 0 ,  B - -  A 

(2.3) 

We set up the boundary conditions for (2.3) by requiring that the stress vector be re- 
duced to zero at the free boundaries I k (k = i, 2, 3, 4) and that the liquid not penetrate 
through Ik. Introducing the unit vectors z~ and m2 of the outward normal and tangent to the 
free boundary, we write 

Vfz.r ~ = 0, z i 'o lz '*2 = 0, T1. O]z. T1 = 0, X = Xh, k = l,  2, 3, 4. ( 2 . 4 )  

The shape of the free boundaries is assumed to be unknown. The problem of finding the 
unknown functions u, v, and P and the shape of the free boundaries Ek ( k = i, 2, 3, 4) satis- 
fying (2.3) and (2.4) will be called the basic problem. 

It seems difficult to find the solution of the basic problem at present. Therefore, in 
this report we consider a simplified problem, for which we introduce an 

Additional Assumption. We assume that in any finite internal subregion Gi, containing 
the point 0, of the flow region G the functions u and v have finite third derivatives, the 
function I(x, y) has a lower bound, and 

I / 8~ 8v k 
0 3 = ~ [ o v  7x)--,-O as B ~ .  ( 2 . 5 )  

The simplified problem consists in determining the unknown functions u, v, and P satis- 
fying (2.3)-(2.5) and the shape of the free boundaries Ek (k = i, 2, 3, 4). We shall solve 
the simplified problem approximately for sufficiently large B (B >> i). 

Discussion of the Additional Assumption. Let us differentiate the first equation of 
(2.3) with respect to y and the second with respect to x. Taking their difference, we obtain 

a(o + 0o3 = / V l  do) 
u ~ v Oy ds - -  - -  

�9 �9 

"- L t -G/  - -~x + 2~1~ ~_ -~dJ +-7-  ~2 a~,~ 

( 2 . 6 )  

o--I 1 - o~,-1\ 
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where dw/ds is the derivative of the vorticity along a stream line. Since u and v have fi- 
nite third derivatives by assumption and I(x, y) > K > 0, the product I~<...> in (2.6) is 
finite. Therefore, d~/ds § 0 and w + const as B § ~ on internal stream lines not containing 
the point 0. Since a plane-parallel flow (~ = 0) is assigned in the oncoming jets, it is 
plausible that ~ § 0 in the region G~ as B + ~. On the other hand, if w + 0 as B + ~ in the 
region G~, then u, v + uo, vo (uo and vo are harmonic functions). But uo and Vo are infinite- 
ly differentiable, while Io = 2/(3uo/3x) 2 + (~uo/~y) 2 is reduced to zero only at infinity. 
Therefore, the additional assumption is consistent and seems plausible. The reduction of 
~2 to zero at the free boundary means that 

~ 1 2 ] ~  O, E -- ! k ,  k ~  t, 2, 3, 4. ( 2 . 7 )  

From the condition (2.7) it follows [21] that as B § ~, 

(o[~ --*- - - C / R  v~ O, 

where R is the radius of curvature of the free boundary at the point under consideration. 
Consequently, as B + ~ a vorticity boundary layer should form near the free boundary. Thus, 
the additional assumption (2.5) is equivalent to the assumption of a boundary layer for suf- 
ficiently large B. Outside the boundary layer the vorticity will be taken as neglibily small, 
and the flow as coinciding with inviscid flow. 

The velocities uo and vo of inviscid flow satisfy the equations of motion of a Newtonian 
liquid (the Navier--Stokes equations). Noncorrespondence arises only when one tries to satis- 
fy the boundary conditions (2.4). This noncorrespondence is the formal basis for the intro- 
duction of a boundary layer near the free surfaces in the case of a viscous liquid. In the 
case of a pseudoplastic liquid Uo and vo are not solutions of the system (2.3), generally 
speaking, for which the terms inside the brackets to ~/I on the right sides of the equations 
are mixed. 

The disagreement will be large in a region with high deformation rates. Near the criti- 
cal point, however, the surface I(x, y) has a maximum and the terms to ~/I are reduced to 
zero. Below we shall attempt to describe the differences between pseudoplastic and inviscid 
flow near free boundaries and far from the critical point for B >> 1 in the boundary-layer 
approximation. Therefore, we shall assume that outside the boundary layer the pseudoplastic 
corrections to the inviscid flow characteristics are negligibly small compared with the cor- 
rections within the boundary layer. 

The equations for a boundary layer near solid walls tan be obtained using an asymptotic 
expansion of the solution with respect to the small parameter I/B ~ [19], as well as by an 
order-of-magnitude estimate of the terms in the equations of motion [20]. It is hard to 
give preference to either of these methods from the point of view of rigor of the presenta- 
tion. To derive the boundary-layer equations in our case we use the method of an order-of- 
magnitude estimate of terms. 

3. Simplification of the Equations of Motion 

According to the condition (2.5), in the limit as B + ~, 

au/ay - -  a~/ax = o ( 3 . 1 )  

on internal stream lines. The condition (3.1) together with the third equation of (2.3) rep- 
resent the Cauchy--Riemann conditions for the analytic function uo -- ivo. The solution of 
the problem of the collision of incompressible plane jets with the condition (3.1) is known 
[I, 2]; it is found by the method of conformal mappings. Since a boundary layer exists near 
the boundaries ~k for B >> i, the region of real flow approximately coincides with the re- 
gion of inviscid flow. Therefore, instead of the Cartesian coordinates x and y we can choose 
curvilinear orthogonal coordinates ~ and ~ corresponding to inviscid flow, d(~ + ~)/d(x + ~)= 
uo -- ivo, where i is the imaginary unit. 

We mark the coordinate ~ by the index i, and @ by the index 2. Following [22], we write 
the equations of motion in stresses: 

V - - ~ •  (salH2nl-Fsa2H2n2) +y~(~zlH~nl+s2~Hln2)). (3,2) 
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Here V is the velocity (V = w~ + gN2); m is the vorticity perpendicular to the plane of 
flow; H~ and Ha are the Lam6 constants; N: and ~= are unit vectors along the coordinates 
and ~. Through a geometrical analysis we can ascertain that 

0111 I]20H~ Oq~ ~1~. Otto. (3.3) 
orp - -  H 2 0~ ' 0~ - - H  1 0q~ ' 

dq2 ql OH1 dq2 "ql OHs 
O~ = H., Oq) ' "O* = --  H--~ " O, �9 

Taking the values of sij from (2.1) and using (3.3), we can write Eqs. (3.2) in the form 

w Ow Z Ow g ( 0fl, ~OlIz~ t aP IC~ { 
ii--7-~-}_TQo ~-~ +H--- ~ zv a---~--~-bT~]= / / ,  0qo @'B-- Azo-t- (3.4) 

7 L ~  o,> + -11-12 -1- e l l e l ~  -~ e l i  
H~ o~p ~ oq~ H~ a ,  ' 

g Og w Og rv ( c)tl 2 O I - , , ) _  t OP ~ {  

_ ~ . ~  el le12 0e l l  i e~2 e l l  0e l l  el te12 Oel-2 

I "  H1 O~# t y l  (]f9 H o 0 *  H 2 dl~ ' 

1 I OwH~ -~ OgHi ~ .~ O, 

"~( Ott3~-u~dHI1 e _  1 (.tr2r 1 O/2; - -  we) 2~r 1 ,I2()g--~a't.)i ~el~~l,e2 
- -  = " ~ = T 12" 

. - 

The third equation in (3.4) is the condition of incompressibility. It is easy to verify 
that H~ = H= = i/wo, where Wo is the velocity of inviscid flow along a stream line. By hw 
and hg we denote the expressions 

l ( I OellH1H2 l OeliH1H2 1 ell  OHo/H1 

1 I I O%~H1H~ 1 O%IHIHo ] eo.~ OH1/'H,, 
2.g -: I t l H  2 itt2 dq" ;- H 1 &p [ q H I Ot~ 

e12 OH1/'ff 2 
+ H 1 O~p ' 

e2i OH2/H 1 
- - @  H 2 O*p 

In Eqs. (3.4) we estimate the terms in order of magnitude within the boundary layer by 
analogy with what was done in [21, 23] for a Newtonian liquid. We introduce the corrections 
z, g, and p to the velocity Wo and the pressure Po of inviscid flow: w = wo(l + z), P = 
Po + P, and g is perpendicular to a stream line of inviscid flow. 

We denote the thickness of the boundary layer as 6. We assume that z, g, p, 6 << i and 
outside the boundary layer z and g have a higher order of smallness. Within the boundary 

layer wo ~ i and 

awo;o ~ = 0(6), OWo/0~ = 0(i), O~wolO~ ~ =  0(6), ( 3 . 5 )  
a~wo,;o~o, = O(t), oiwo/o~ ~ = 0(t). 

The estimates ( 3 . 5 )  can be obtained using the analytieity of the function ~+ i~ of 
the argument in wo -- i6, as well as the expressions 3~/3~ and 3~/3 in wo [24]. For 0wW0% 

and 3Wo/3~ with Ii -- wo] << i, for example, we have 

{ a,,'00 

oo LkO,7  J 
o~/m aq~ t /  a~/ao ~2 t ]=12(O,Y) ,  

J 

(3.5a) 

(3.5b) 

where If~[ § ~ and Ifil § 0 as ~ • while If11, [fil < fo(Y) for finite ~ . For not 
very small y the quantity fo has the order of several units, so that fl, f= = 0(i), while 
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since (I -- wo) ~ 6(3wo/~)IZ, we obtain the first two estimates of (3.5). Estimates for the 

second derivatives are obtained similarly. 

To estimate the derivatives of the corrections, we examine the third equation in (3.4), 

a (1/~o) I ag a ( l + z )  ag/~ o az + g ~ @  - - 0 .  
a~p ~ a~ - -  O~p O~p w o a~ 

The variation of the corrections z and g along ~ takes place in a distance on the order 
of one, and that along # in a distance on the order of ~, so that 

from which 

az a ( I /Wo)  1 ag 
0 ,-7~ -~- g a ,  + o~ ~ ~ + g + T  =~ 

U~ 0 

g = o(=6), 

i.e., g is a smaller quantity of a higher order than ~ or z. Consequently, the displacement 
of stream lines can be neglected and we can assume that the regions of real and inviscid flow 
coincide in a first approximation. Arguing similarly, we estimate e11, e~=, and their deriv- 
atives in order of magnitude: 

Oell  ~ a"Wo r c~2z ~)e]2 
c)~ O~ ~ n - 2  . = 0 ( ~  , '--:5, " - - 0  . a(p~ ' alI. dg. a 

( 3 . 7 )  

The following estimates are valid for Aw and Ag: 

Aw: O(z/6~], 5~ 0(='6). 

With allowance for (3.5)-(3.8) we can keep only the leading terms in (3.4): 

( 3 . 8 )  

2 . ~w 0 az [~ I + ~  e12~a~-z ap ( 3 . 9 )  

The first boundary condition of (2.4) is satisfied identically in a first approximation, 

from which we get 

{a4 ==o (3.1o) 

while the third gives P[x- o~tZ : 0, or 

[2 c,=6 ~-\I+~ _~" 

-- B -e11 _~=-- B (3.11) 

Thus, for sufficiently large B the approximate solution of the simplified problem (2.3)- 
(2.5) comes down to the search for the unknown functions z and p from Eqs. (3.9) with the 
boundary conditions (3.10) and (3.11) to the known region G0(%~ ) of inviscid flow in the 
plane of the complex potential. The region G0(%~ ) is a two-sheet band with a branching 
point at the critical point. Conformity of the approximate solution to the real flow should 
be reached for B >> 1 such that, in the vicinity of the critical point [z(0, 0) I << Iz(0,~E) I, 
i.e., the boundary layer must not enclose the critical point. Then one must divide the re- 
gion G0(%~ ) cutting the sheets of G0(%~ ) along the negative ~ semiaxis, and splice them 
together to obtain two unconnected bands corresponding to the ramming and cumulative jets. 
Since the simplified equations of motion are no longer elliptic, we must set up the initial 
condition for z. Such a condition can be chosen by going far enough upstream from the criti- 
cal point and setting 

z(%, ~) ~ 0, (3.12) 

where % is the distance from the critical point. 
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For the regime of the collision (2y = 45 ~ , h = 0.4 cm, U = 1.0.I05 cm/sec) of copper 

plates a calculation of the similarity parameter B yields B = 45 at T = 300~ and B = 69 at 
T = II00~ i.e., the condition B >> 1 is satisfied. By varying B in this range one can 
roughly allow for the temperature. In the case of a = 0 (a Newtonian liquid) the number B 
coincides with the Reynolds number Re = 0Uh/~, while Eqs. (3.9) with the conditions (3.10)- 
(3.12) coincide with the equations and the boundary and initial conditions obtained in [21] 
for the case of a small constant viscosity. 

4. Numerical Calculation of the Simplified Equations of Motion 
and a Comparison of the Calculated Results with Experiment 

An analytical investigation of the equation for z in (3.9) is complicated because of 
the coefficient to 32z/3@2 which depends on &/a~ and ~z/3~. Therefore, this equation was 

investigated numerically on a computer. The following implicit finite-difference scheme was 
used to calculate the correction z: 

[ e~ff (1) I ,1§ ~ .n+l , l+ l  t .~q-l,lq-I ~4-1,lq-i Z~ [~ (~) Zm-}- 1 - -  =~nl -f- ~nz--1 

~" B I ~ (1) J I- '~ 
" ~ . n ~ l , l \  ( . n + l  / =~ z~,~-~ 'l -- ~ m - I  | ;  

e,o (1~, l if) = q2 '  I -%' '~--  - " ' 2/, / 

(4.1) 

here T and h are the steps in ~ and @, respectively. We set up the condition 

- -  M--1 _ _  

h, ut='7 ,- ' 

at the free boundary and the condition 

(4.2) 

zo ~+lJ -- z~ +1'l" (4.3) 

on the line @ = 0. The calculation started from the value % where we took 

~o = 0 ,  m = 0 , 1 , 2 ,  M. om .... (4.4) 

The value of % was varied from--0.5 to--8.0. The solution of (4.1)-(4.4) was found by the 
trial-run method. At each step in 9 the calculated values of z were successively improved 
by substituting the new derivatives Az/T and Az/h into the coefficient (I~/B)(I + uea~=/Ia). 

The number of iterations Z ranged from 3 to 15. After the seventh iteration the values of 
z l+~ and z I did not differ in,the sixth significant figure. The scheme (4.1) is stable. The 
step T was varied in accordance with the law �9 = %1 ~ I~'/~D[ X(T0 - -  %1) where To is the initial 
step at ~= %, and T~ is the step at ~= 0 In the calculation of z in a cumulative jet 
To = 0.01-0.02 and T~ = 0.00038~0.0019. In the calculation in a ramming jet, To = 0.01-0.08 
and T: = 0.005-0.08. The number of layers in ~ was varied from 20 to 50. 

The calculation was cut off at 9, > 0 so that the values of z(9,, *) over a cross section 
~. = const differed in the third significant figure. For a cumulative jet, q. = 1.0 for 
y = 22.5, 30, and 37.5 ~ and 9, = 8.0 for a ramming jet. The time of calculation of one vari- 

ant on an M4030 computer was about 30 min. 

--0,990 --0,970 --0,950 --0,930 --0,870 

I 75 45 60 75 45 60 75 45 60 75 45 60 75 

0,77 
0,4I 
0,28 
0,24 
0,f9 

0,59 0,48 
0,31 0,23 
0120 0,15 
0,15 0,I0 
0,13 0,09 

0,80 
0,40 
0,30 
0,23 
0,t9 

0.6i 0,49 
0.32 0.24 
012t 0;t6 
0,t6 0.t2 
0,i3 (1109 

0,82 0,62 
0,44 0,32 
0,32 0,22 
0,22 0,!6 
0,t8 0,t3 

0,50 0,84 0,6~ 
0,25 0,45 0,32 
0.16 0,31 0,2~ 
0112 0.2210,tC 
0,09 io,t [o,< 

0,51 0,91 0,69 0,55 
0,25]0,49 0,3510,27 
0,i7[0,33 0,23 0,18 o,1 o,251o,tslo,13 
0,t0 0,20 0,140,10 

TABLE 1 

~ 45 60 

32 
64 
96 

128 
160 
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The quantity z was Calculated as a function of the parameters y, B, and ~. The results 
of calculations of the correction z in a cumulative jet are summarized in Table i. The 

values of z are found at the intersection of the row with the value of B and the column with 
the value of 2y in each group of three columns for a given value of ~. The qualitative be- 
havior of the function Iz(~)I for a cumulative jet and a ram is shown in Fig. 2a and b, re- 
spectively (lines 1-3 correspond to 2y = 75, 60, and 45 ~ for B = 32). The dependence of Izl 
on log B for ~ = 4.97 is presented in Fig. 3 (cumulative jet) and Fig. 4 (ram). The value 
of Izl for copper can be determined approximately from the graph in Fig. 3. For this one 
must determine the value of log B from the value of U (curve 4) and then find the value of 
Izl from the value of log B (lower abscissa axis) for the angles of 75, 60, and 45 ~ from 
curves 1-3, respectively. 

The regime of the collision (U = 1 km/sec, h = 0.4 cm) of copper plates (p = 8.9 g/cm 3, 
Oy = 25 kg/mm 2, ~ = 4-0.97) corresponds to B = 45 at T = 300~ and B = 69 at T = II00~ To 
compare the calculated and experimental results one can choose the mean value of B = 55. The 
calculated correction z for 2y = 45 ~ and B = 55 is z =4-0.52. In [4] the experimental value 
z = 4-0.40 was obtained for this collision regime, i.e., the agreement between the calculated 
and experimental values of z is not bad. 

We also calculated the shape of the indicator line by the method of [25]. The results 
of the calculation for B = 55, 2y = 45 ~ , and a =4-0.97 (copper, U = 1 km/sec, h = 0.4 cm) in 
a comparison with the experimental data in the same collision regime are presented in Fig. 5 
(the figures next to the symbols denote the multiplicity of the repetition). The agreement 
of the calculated and experimental displacements of the line is good. One can see that the 
experimental characteristics of flow both in a jet and in plates correspond fairly well to 
the same value of B = 55, whereas a Newtonian liquid describes these characteristics for con- 
siderably different Reynolds numbers (Re ~ ~ 350 and Re, ~ 25, respectively). In contrast to 
the Reynolds number calculated in the treatment of tests on the collision of plates, to cal- 
culate B it is sufficient to know the objective characteristics p, ~y, and ~ of the material, 
which can be obtained independently of tests on the collision of plates. The estimated 
value of B can be found from the formula B ~ ~oU2/oy. 
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It is also interesting to compare the calculated and experimental derivatives ~(~) = 
d~(~)/d~ of the established shape of the indicator line. Acocrding to the model of a viscous 
liquid, the derivative ~(~) grows linearly from the free boundary (Fig. 6, curve 2, Re = 70). 
The value of Re = 70 is taken from a comparison of the calculated shape of the line with an 
experiment on the collision of copper plates for U = 2.0 km/sec, h = 0.4 cm, and 2y = 45 ~ 
[25]. In this collision regime B = 170 at T = 300~ and B = 270 at T = IIO0~ and the mean 
value is B = 220. The function 6(~) = d@(~)/d~ calculated from the model of a power-law 
pseudoplastic liquid for the mean value of B has an inflection point near the free boundary 
(curve 3, ~ =--0.97, B = 220). 

We measured the experimental slope of the markers in a test with 2y = 45 ~ U = 2.0 km/ 
sec, and h = 0.4 cm. The measurement was made on a microscope; the slope angle was measured 
to within 20 min and then the derivative was calculated as the tangent of the slope angle. 
The results of the measurement are presented in Fig. 6, where curve 4 approximates the ex- 
perimental values of the derivative and curve i is the slope for an ideal liquid. On the ex- 
perimental function ~(~) one can see an inflection point (characteristic for a pseudoplastic 
liquid) which is not on the calculated 6(~) curve based on the model of a viscous liquid. 
Fair numerical agreement between the experimental and calculated values of ~(~) is reached at 
B = 170 (rather than at the mean value B = 220), which probably corresponds to the well-known 
experimental fact of slight heating of the plates (AT ~ 50-I00~ in this collision regime. 

It should be noted that better agreement between the calculated and experimental charac- 
teristics Izl in a cumulative jet in the collision regime (2y = 45 ~ , copper, U = i km/sec, 
h = 0.4 cm) is reached at.B = 64 (rather than at the mean value B = 55), which corresponds 
to heating by 700~ In this case, the calculated value is [z I = 0.41 (see Table i), while 
the experimental value is Iz[ = 0.40, as already mentioned. Although, however, such good 
agreement when using a very approximate flow model, which the boundary-layer approximation is 
for finite values of B, and with the known experimental error may also be accidental. 

Thus, the model of a power-law pseudoplastic liquid, based on the Vitman--Zlatin model of 
high-speed deformation of metals, allows one to avoid the difficulties inherent to a viscous 
liquid, connected with the different calculating parameters of similarity in thin and thick 
jets when describing experimental facts. The assumption that there is a boundary layer near 
the free surface allows one to simplify the equations of motion and achieve fair quantitative 
agreement between the calculated and experimental characteristics of the process of plane 
cumulation for copper in the stage of the formation of a cumulative jet. 

LITERATURE CITED 

I. M. A. Lavrent'ev, "The hollow charge and the principle of its operation," Usp. Mat. 
Nauk, 12, No. 4 (76) (1957). 

2. G. Birkhoff, D. McDougall, E. Pugh, and G. Taylor, "Explosives with lined cavities," J. 
Appl. Phys., 19, 563 (1948). 

3. S. K. Godunov, A. A. Deribas, and V. I. Mali, "Influence of the viscosity of the materi- 
al on the process of formation of jets in collisions of metal plates," Fiz. Goreniya 
Vzryva, ii, No. i (1975). 

908 



. 

. 

6 

7 

8 

9 

I0 

ii 

12 

13 

14. 

15. 

16. 

17. 
18. 

19. 

20. 
21. 

22. 

23. 
24. 

25. 

V. I. Laptev, M. V. Rubtsov, and Yu. A. Trishin, "On the use of the model of a viscous 
liquid to describe high-speed jet flows of metals," Fiz. Goreniya Vzryva, 19, No. 4 
(1983). 
G. J. Taylor and H. Quinney, "The plastic distortion of metals," Philos. Trans. R. Soc. 
London, Set. A, 230, No. A689 (1931). 
W. Lode, "Influence of the average principal stress on the fluidity of metals," in: 
The Theory of Plasticity [Russian translation], IL, Moscow (1948). 
A. M. Zhukov, "The plastic properties and destruction of steel in the biaxial stressed 
state," Inzh. Sb., 20 (1954). 
F. F. Vitman, N. A. Zlatin, and B. S. Ioffe, "Resistance of metals to deformation at 
velocities of 10-6-102 m/sec. I," Zh. Tekh. Fiz., 19, No. 3 (1949). 
F. F. Vitman and N. A. Zlatin, "Resistance of metals to deformation at velocities of 
10-6-10 = m/sec. II," Zh. Tekh. Fiz., 19, No. 3 (1949). 
J. D. Campbell and W. G. Ferguson, "The temperature and strain-rate dependence of the 
shear strength of mild steel," Philos. Mag., 21, No. 169 (1970). 
0. I. Katsitadze, I. B. Markelov, and V. V. Varvaryuk, "Measurement of the dynamic yield 
limit under impact compression," Soobshch. Akad. Nauk Gruz. SSR, 75, No. 1 (1974). 
A. Nadai and M. Manjoine, "High-speed tension tests at elevated temperatures. Parts II 
and III," Trans. ASME, Ser. E, J. AppI. Mech., 8, No. 2 (1941). 
F. F. Vitman and V. A. Stepanov, "Influence of the deformation rate on the resistance 
of metals to deformation at impact velocities of 102-103 m/sec," in: Some Problems of 
the Strength of Solids [in Russian], Izd. Akad. Nauk SSSR, Moscow--Leningrad (1959). 
F. F. Vitman and N. A. Zlatin, "Resistance of metals to deformation at velocities of 
10-6-10 = m/sec. III," Zh. Tekh. Fiz., 20, No. i0 (1950). 
P. W. Bridgman, "Recent work in the field of high pressures," Rev. Mod. Phys., 18, 1-93 
(1946). 
N. N. Malinin, The Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, 
Moscow (1975). 
A. H. P. Skelland, Non-Newtonian Flow and Heat Transfer, Wiley, N. Y. (1967). 
G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 
London-New York (1974). ~ 
Z. P. Shul'man and B. M. Berkovskii, The Boundary Layer for Non-Newtonian Liquids [in 
Russian], Nauka i Tekhnika, Minsk (1966). 
L. S. Artyushkov, The Dynamics of Non-Newtonian Liquids [in Russian], LKI, Leningrad (1979). 
M. V. Rubtsov, "On the boundary layer in the collision of plane jets with a low viscosity," 
Din. Sploshnoi Sredy, No. 51 (1981). 
N. A. Slezkin, Dynamics of a Viscous Liquid [in Russian], Izd. Tekh.-Teor. Lit., Moscow 
(1955). 
H. Schlichting, Boundary Layer Theory, 6th ed., McGraw-Hill, New York (1968). 
M. V. Rubtsov, "Deformation of a liquid line in the collision of jets," Zh. Prikl. 
Mekh. Tekh. Fiz., No. 6 (1977). 
V. I. Laptev, M. V. Rubtsov, and Yu. A. Trishin, "Properties of viscous flow in the col- 
lision of metal plates accelerated by an explosion," Din. Sploshnoi Sredy, No. 55 (1982). 

909 


